軌道エレベータ解析に関する Isaacs らの論文の内容確認

2010年3月31日
m-kohno

1. はじめに
Isaacs らはこの概念を Sky-Hook と呼び、全長での張力を一定にするためのテーブル構造や、カウンターウェイト構成、各種材料での総重量、地表での直径などの解析を行っている。後年、Pearson[3]がテーブル構造について述べているが、彼の論文において Isaacs らの Ref が無いことを考えると、Pearson は Isaacs らの論文を知らなかったと思われる。
いろいろな解析をしたはずの Isaacs らだが、彼らの論文を読んでみても直ぐには理解できなかった。本資料においては、Isaacs の考え方を検証し、式の導出過程を明示することを目的とする。そして、彼らが行った業績を正しく捕らえる事とする。

2. 確認
■ 2-1 Reproduction Factor（RF）の導出方法
下記式をもって table 1 における Reproduction Factor を導出できた。

\[RF = \frac{T}{W} \]

\[T = (\text{Fiber Strength}) \cdot A(a) \quad [\text{dyne}] \]

\[= (\text{Fiber Strength}) \cdot A(a) \times 10^5 \quad [\text{N}] \]

（Beryllium, Diamond の場合は Theoretical Strength）

\[A(a) = \pi \cdot \left(\frac{D}{2} \right)^2 \]

\[W = M \quad [\text{tons}] \]

\[= M \times 10^3 \quad [\text{kgf}] \]

\[= M \times 10^3 \cdot 9.8 \quad [\text{N}] \]

T：張力
Fiber Strength：ファイバー強度（table 1）
Theoretical Strength：ファイバー理論強度（table 1）
W：全重量（table 1）
A(a)：地上の断面積
a：惑星の半径
D：Base diameter（table 1）
M：全重量（table 1）

2-2 テーパー形状の確認
Isaacs の式を変形し，Pearson の式と同じ式になるかどうかを確認する。
Isaacs の式は，

\[A(r) = A(\lambda) \exp \left[-\gamma \psi \left(\frac{r}{\lambda} \right) \right] \]

\(\square \)：静止軌道半径
\(\gamma = \frac{\rho}{Y} (\sigma_a^2 \sigma)^2 \)

\(\psi(s) = (1-s)^2 \left(\frac{1}{2} + \frac{1}{s} \right) \)

であり，A(r)に \(\square \)， \(\square (\square) \)を代入すると，

\[A(r) = A(\lambda) \exp \left[-\frac{\rho}{Y} (\sigma_a^2 \sigma)^2 \right] \left[1 - \frac{r}{\lambda} \right] \left(\frac{1}{2} + \frac{\lambda}{r} \right) \]

\[= A(\lambda) \exp \left[-\frac{\rho}{Y} (\sigma_a^2 \sigma)^2 \right] \left\{ 1 - \frac{3}{2} + \frac{\lambda}{r} + \frac{1}{2} \left(\frac{r}{\lambda} \right)^2 \right\} \]

\[= A(\lambda) \exp \left[-\frac{3\sigma_a^2}{2h\lambda} \right] \exp \left[-\frac{a^2}{h} \left(\frac{1}{2} + \frac{r^2}{2h^2} \right) \right] \]

ここで，Pearson[3]の記述より，
\[h = \frac{\sigma}{\rho \xi_0} \rightarrow \frac{V}{\rho \xi_0} \]
とした。上記式は，下記の Pearson の式と同等であった。

> Pearson の式
\[A(r) = A_e \exp \left[\frac{3r_0^2}{2hr_i} \right] \exp \left[-\frac{r_0^2}{h} r_i \left(\frac{1}{r} + \frac{r^2}{2r_i^3} \right) \right] \]

2-3 下端の直径
高度 1km の範囲に 200km/h の風が当たることを前提に書かれているが、理解不能。

2-4 Reproduction factor の逆数の導出（再現に必要な数値に相当）
\[\frac{g(M + m)}{T(a)} \] を導出する。

\(m \)：カウンターウェイト質量
\(M \)：ケーブル部の全質量

私が求めた[5]カウンターウェイトの質量 \(m \) は、
\[m = \frac{\sigma A(r_e)}{gr_0^2 \left(-\frac{1}{r_e^2} + \frac{r_i}{r_e^3} \right)} \]

である。これを Isaacs らの表記に書き直すと
\[m = \frac{Y A \left(R \right)}{ga^2 \left(-\frac{1}{R^2} + \frac{R}{\lambda^3} \right)} \]
\[= \frac{\lambda^3 R^2 Y}{ga^2 \left(\lambda^3 + R \lambda^3 \right)} A \left(R \right) \]
\[= \frac{\lambda^2 Y}{ga^2} A \left(\lambda \right) \frac{\lambda R^2}{R^3 - \lambda^3} \exp \left[-\gamma \psi \left(\frac{R}{\lambda} \right) \right] \]

となる。

次に、ケーブルの全質量 \(M \) は
\[M = \int A(r) dr \]
\[= \int \frac{\rho A \left(\lambda \right) \lambda R^2}{R^3 - \lambda^3} \exp \left[-\gamma \psi \left(\frac{R}{\lambda} \right) \right] dr \]
\[r/\lambda = \sigma \text{ として、} \ dr = \lambda d \sigma \text{ より} \]
\[M = \rho \lambda A (\lambda) \int_{\tau}^{\lambda} \exp[-\gamma \psi (\sigma)] d\tau \]

を得る。

張力 \(T(a) \) は
\[
T(a) = YA(\lambda) = YA(\lambda) \exp[-\gamma \psi (\lambda)]
\]
である。

\[g \left(\frac{M + m}{T(a)} \right) = \frac{g}{YA(\lambda)} \gamma (\frac{1}{2})^{\frac{1}{2}} \left[\frac{\rho \lambda A(\lambda) \int_{\tau}^{\lambda} e^{-\gamma \psi (\sigma)} d\sigma + \frac{\gamma R^2}{ga^2} A(\lambda) \int_{\tau}^{\lambda} \frac{\lambda R^2}{R^3 - \lambda^3} e^{-\gamma \psi (\lambda)} d\gamma \right]
\]
ここです,
\[\varepsilon = \frac{a g^2}{\rho} = \frac{\rho}{Y} \frac{g a^2}{\lambda^3} = \frac{a^3}{\lambda^3}
\]
\[\gamma = \frac{\rho}{Y} \left(ga^2 \right)^2 = \frac{\rho}{Y} \frac{ga^2}{\lambda^2}
\]
なので,
\[
\frac{g (M + m)}{T(a)} = \varepsilon \gamma^{\frac{1}{2}} \left[\frac{1}{2} \int_{\tau}^{\lambda} e^{-\gamma \psi (\sigma)} d\sigma + \frac{\lambda R^2}{R^3 - \lambda^3} e^{-\gamma \psi (\lambda)} \right]
\]
となり、Isaacsらの式を導出することができた。

3．さいごに
Isaacsらのパラメータや式を確認したところ、軌道エレベータのテーパー構造、カウンターウェイト質量などが正しく導出されていた（カウンターウェイトの質量の検証については、私と一致しただけだが）。しかし、各種材料での地表での径の導出方法については理解ができなかった。

なお、彼らが示した Reproduction factor という指標は興味深い。彼らに敬意を表し、何かの折には使いたいと思う。

4．参照

